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The asymptotic flow structure is considered for a viscous-inviscid conical interaction, 
in particular that between a swept shock wave and a boundary layer. A flow model is 
devised based on the three-layer interaction concept. Assuming conicity of the inviscid 
flow regions, a viscous layer structure is established that is compatible with the inviscid 
outer flow, and which produces a geometrically conical surface flow pattern. This result 
is obtained from a dimensional analysis, which reveals similarity of the viscous layer 
in cross-flow planes at different radial distances from the conical origin. The results of 
this analysis provide a tool for the quantitative interpretation of surface flow 
visualizations in terms of the related topological structure of the flow in the cross-flow 
plane. This method is illustrated by application to the surface flow visualization of a 
Mach 3 shock-wavelboundary-layer interaction. 

1. Introduction 
1.1. Conical viscous/inviscid interactions 

For geometrically conical configurations, like delta wings, cones, or wedgeplate 
junctions, the supersonic inviscid flow field can (under appropriate conditions) display 
a conical symmetry, where flow variables are constant along straight rays emanating 
from the body vertex (Bulakh 1970). The conical flow similarity is essentially restricted 
to inviscid flow, and is absent in viscous flow due to the length dependence of the shear 
stress terms. Notwithstanding this, the interaction between a nearly inviscid outer 
flow and a viscosity-dominated surface flow has often been observed to result in (near) 
conicity of the surface flow pattern, e.g. for the surface pressure and skin friction 
directions. 

An important class of conical flows is that resulting from the interaction between a 
swept shock wave and a boundary layer (see figure 1). In practice this occurs, for 
example, for shock waves generated by the leading edge of aircraft wings, at the inlet 
of a supersonic diffusor or between the blades of a turbine cascade. The (asymptotic) 
conicity of this type of interaction has been revealed in an abundance of experimental 
and numerical studies, see recent reviews by Settles (1993) and Knight (1993). 
Relatively little attention has been given to the theoretical description of the underlying 
asymptotic structure, apart from the study by Inger (1987) where the far field of the 
conical interaction was, however, incorrectly argued to possess a quasi-two- 
dimensional structure in the cross-flow plane. 

An important source of information on relevant flow features can be obtained from 
the interpretation of surface flow visualization experiments. These show a geometric 
conicity, in that along rays emanating from a certain origin close to the wedge apex the 
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FIGURE 1. Conical interaction between a swept shock wave and a boundary layer. 
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FIGURE 2. Definition of geometry and coordinate systems : (a)  Cartesian and spherical/conical 
coordinate system; (b) surface flow description. 
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directions of the oil streaklines are to a large extent independent of the distance along 
the ray. The aim of the present investigation is to provide an analytical framework for 
the quantitative interpretation of such surface flow visualizations, in terms of 
corresponding cross-flow features, for conical interaction fields. To this end, the scaling 
structure of the interaction has to be considered first, in particular that of the viscous 
regions (Van Oudheusden 1995). 

1.2. Conical pow field description 
In a conical flow field all flow quantities are constant on rays through the conical centre 
of the flow field, which makes it beneficial to study such flows in a so-called cross-flow 
plane representation. Neglecting secondary effects, the conical centre of the fin-plate 
interaction lies at the intersection of the fin leading edge with the plate surface. The 
flow velocity vector is decomposed into a radial component U and cross-flow 
components V and W with regard to the conical reference frame ( r ,  0, $), see figure 2 
and the Appendix for details. As in conical flow the flow pattern is invariant with r ,  its 
relevant features are revealed in the (8,$) cross-flow plane. Also, the local flow 
direction $ at a point of the surface is a function only of the ray angle 6' (see figure 2 b 
for the definition of 4). 

The topological structure of the cross-flow streamline pattern is characterized by its 
singular points, where the local velocity vector coincides with the ray direction and, 
hence, the cross-flow components V and W vanish. Singular points that lie on the 
surface correspond to lines in the surface flow patterns where the surface flow is 
directed along the conical ray, and where hence the local flow angle d is zero. A relation 
between the surface pattern near a singular surface line and the topology of the 
corresponding cross-flow singularity will be established in 6 3. 

For reference the surface flow direction representation and the cross-flow streamline 
pattern of the inviscid wedge flow are depicted in figure 3. In the (8,  $)-plane the flow 
is represented by two straight line segments, 4 = - 6' for 6' > cr for the undisturbed flow 
upstream of the shock, and $ = a - 8 for a < 8 < cr for the deflected flow behind the 
shock (a and cr denote the wedge angle and shock wave angle, respectively). The cross- 
flow streamlines are generated by the following expression : 

d8 - -  V v l u - 8  - p - O  
d$ W w/u-$  -$ 

for small angles B, 6' and $. Here u, u, w are the Cartesian velocity components and 
/3 = 8+ $ the local flow direction with respect to the undisturbed flow (figure 2b). The 
cross-flow pattern for a constant value of p corresponds to radially converging 
streamlines in the (8, $)-plane. For the undisturbed flow at 8 > cr the streamlines 
converge on (O,O), while for the deflected flow at CI < 8 < cr they converge on (a,O). 

1.3. Conical shock-wavelboundary-layer interactions 
To put the present study in perspective, a short summary is given here of the major flow 
features of the conical interaction as revealed by the existing body of experimental and 
numerical evidence, see again the reviews in Settles (1993) and Knight (1993). For weak 
shocks the flow in the boundary layer is deflected without displaying separation. As the 
streamlines in the boundary layer are deflected by a larger amount that those in the 
inviscid flow, a variation of the flow direction through the boundary layer is 
introduced, which gives rise to a streamwise vorticity component. McCabe (1966) 
considered the deflection of the surface streamlines using an inviscid vorticity transport 
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FIGURE 3. Conical representation of inviscid wedge flow (arbitrary units) : (a) conical cross-flow 
streamline pattern; (h) surface projection of the inviscid streamline pattern; (c)  conical surface flow 
direction. 

approach. He derived an approximate expression for the surface flow deflection p, as 
a function of the inviscid flow deflection p, at the boundary layer edge, predicing that 
for small deflection angles r?, = 3p,. 

For sufficient shock strength the flow is forced to separate from the surface. 
According to Stanbrook (1960) incipient separation occurs when the surface flow 
deflection equals the shock angle, corresponding to a vanishing skin friction component 
normal to the interaction as in swept two-dimensional separation. Separation is 
reflected by a convergence of skin friction lines towards the separation line, while at 
reattachment a divergence of skin friction lines occurs. In a conical flow field the 
separation surface rolls up into a (conical) vortex. Topologically, the corresponding 
separated flow in the conical cross-flow plane consists of a separation-saddle/focus 
connection and a further attachment-saddle, in contrast to (swept) two-dimensional 
flow where a local separation has a closed saddle/centre/saddle structure. With a 
further increase of the shock strength the reversed flow under the vortex may induce 
a secondary separation (Korkegi 1976). Kubota & Stollery (1982) found evidence of 
the separated vortical flow region above the surface, and in addition a second vortex 
near the fin/plate intersection line, the latter being present even for weak interactions 
without boundary layer separation. This corner vortex was also reported in recent 
numerical studies (Knight 1993 ; Panaras 1992). The conical character of the interaction 
flow field has been further confirmed by extensive visualization experiments (Settles & 
Lu 1985; Alvi & Settles 1992), which reveal that the swept main shock bifurcates into 
an oblique separation shock and a nearly normal, but curved rear shock above the 
separated vortex flow (cf. figure 1). 
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FIGURE 4. Schematic structure of the interaction region in the cross-flow plane. A: inviscid, 
irrotational flow; B: inviscid rotational flow; C: viscous flow. 

1.4. Three-layer f low models for  viscouslinviscid interactions 
The structure of the interaction between a shock wave and a boundary layer, where the 
discontinuous pressure rise over the inviscid shock wave is incompatible with the 
normal boundary layer asumption of small streamwise gradients, can be described by 
a three-layer model. This ‘triple deck’ structure has commonly been used for the 
asymptotic analysis of both incompressible and compressible interactions in two- 
dimensional laminar flows (Stewartson 1974; Burggraf 1975). In the present study, this 
approach is applied to describe the flow structure of the conical interaction in the cross- 
flow plane (figure 4). It distinguishes an outer flow region (A), an inviscid interaction 
region (B), and viscous flow layers at the fin and plate surfaces (C), cf. Stollery (1975). 
The C-layers consist of viscous rotational flow, where ‘viscous’ is used here to imply 
that shearing stresses are significant and hence includes both laminar and turbulent 
stresses. Region A corresponds to the undisturbed flow, which is inviscid and (in the 
absence of shock curvature) irrotational. The intermediate region (B) consists of 
inviscid, rotational flow, where the pressure field of the inviscid flow is modified to 
accommodate the viscous layer, while simultaneously the displacing effect of the 
viscous layers is transferred to the outer flow. In this flow field structure it is possible 
to embed a local small-scale separation within the viscous layer, if an interacting 
boundary condition is used to represent the matching with the outer flow (Stewartson 
1974; Burggraf et al. 1979; Veldman 1979). This interacting boundary layer differs 
from the classical boundary layer mainly in that its displacement effect on the inviscid 
flow is of leading order. 

2. Quantitative and topological interpretation of surface flow patterns 
2.1. Interpretation of surface oil flow visualizations 

The streaklines in oil flow patterns are generally considered as being tangent to the 
direction of the skin friction on the surface. According to the molecular concept of 
viscosity, the viscous stress is parallel to the velocity shear which makes the skin 
friction direction equal to the limit of the flow direction when approaching the surface. 
Hence, the surface pattern is also referred to as ‘surface streamlines’ or ‘limiting 
streamlines’. In general a separation line on the surface may be recognized as a line on 
which streaklines converge and where oil accumulates due to the shearing action of the 



120 B. W. Van Oudheusden, C. Nebbeling and W. J .  Bannink 

-1 < $$ 0 

FIGURE 5. Geometry of surface streamlines. 

flow. Conversely, attachment lines are accompanied by a divergent streakline pattern 
and an oil depletion effect. For a swept two-dimensional symmetry the surface pattern 
consists, in a first-order approximation, of streaklines either exponentially converging 
or diverging with respect to the singular line (Oskam, Vas & Bogdonoff 1976), 
corresponding to a separation and attachment line, respectively. Each is represented by 
a saddle singularity in the cross-flow plane normal to the singular line. For conical 
flow, on the other hand, it is possible for a nodal point to occur with either converging 
or diverging streaklines (Bulakh 1970; Bakker 1991). Here ‘strong’ convergence or 
divergence is required to obtain a saddle singularity in the cross-flow plane. In this 
context the term convergence is generally used to indicate that the streaklines 
asymptotically approach the singular line, whereas the situation where streaklines 
initially bend towards the singular line, but ultimately run parallel to it, is referred to 
as ‘incomplete convergence’ (Kubota & Stollery 1982). As the results of the present 
analysis will reveal, the transfer from incomplete to complete convergence in conical 
flow is not necessarily accompanied by the formation of a saddle point in the conical 
cross-flow plane. 

2.2. Topological considerations in conical @ow 
As already mentioned the convergence and divergence lines correspond to singular 
points in the cross-flow plane. A direct relation between the streakline pattern and the 
nature of the corresponding singularity for the case of inviscid, isentropic conical flow 
was given by Bakker (1991), showing that three types of first-order surface singularities 
are possible: attachment and separation saddles, and a stable node (i.e. with inflowing 
streamlines). For reference a summary of this result is given in the following section. 
This approach is very appealing as it quantifies the relation between the topology of 
the cross-flow field and the surface pattern as represented in the (O,$)-plane, rather 
than just the qualitative observation that flow separation is accompanied by ‘ (strong) 
convergence of the streaklines’, and flow attachment by ‘(strong) divergence of the 
streaklines’. In $ 3  this analysis will be extended to establish a similar relation when 
viscous effects are included. Taking a linearization of the streakline field near the 
singular line, its structure is represented by the local value of &, i.e. the partial 
derivative of 4 with respect to 0, see figure 5 (Bakker 1991): 



Surface flow visualization of conical viscouslinviscid interactions 121 

& < - l :  converging streaklines ; 
$he=-l:  
- 1 < $, < 0: 
$8 = 0: 
$h8 > 0: 

parallel streaklines (with zero curvature) ; 
diverging streaklines with negative curvature; 
radially diverging streaklines (zero curvature) ; 
diverging streaklines with positive curvature. 

2.3. Topology of conical surface singularities in inviscidflow (Bakker 1991) 
Assuming for convenience only small flow angles, the conical surface flow direction $ 
in inviscid flow is given by $ = V / U ,  hence, at a singular line we have $ = 0 and 
$o = V,/U. The structure of the singularity is obtained from a local linearization of the 
cross-flow streamline pattern, which in general near the surface is (where W, vanishes 
identically) 

Evaluation of the continuity and momentum equations at the surface singularity yields 
the additional conditions V@ = 0 and V,+ W@+ 2U = 0 (see the Appendix), with which 
the above expression can be replaced by the following equivalent linear system: 

Unless $8 = - 2 or 0, for which the above system becomes degenerate and higher-order 
singularities have to be considered, the structure of the singularity is described by the 
eigenvalues of the matrix (see e.g. Jordan & Smith 1977), as 

separation saddle ; 
stable orthogonal node; 
stable star-like node; 
stable tangent node; 

$@ < -2: 
-2 < $, < - 1 : 
$ 8 -  --1:  
- 1 < $8 < 0: 
$h8 > 0: attachment saddle. 

Hence, the value of $e establishes a direct relation between the structure of the surface 
flow pattern near a singular line and the topology of the related conical singularity. 
Note that the condition for a separation saddle to occur ($8 < - 2) is more severe than 
that for streakline convergence ($8 < - l), as given in $2.2. 

3. Conical surface singularities in viscous flow 
3.1. Scaling of the viscous layer 

The viscous layer is defined as the region of the flow adjacent to the surface where shear 
stresses have to be taken into account. As the viscous equations do not allow a strict 
conicity of the flow field in general, the major question to be addressed here is whether 
it is possible to devise a structure of the viscous layer that is compatible with the conical 
inviscid flow, and that produces a geometrically conical surface flow (skin friction 
pattern). The conical inviscid flow imposes conical boundary conditions on velocity 
components and thermodynamic properties (temperature, pressure and density). Note 
that the conicity of the surface flow pattern does not imply that the surface shear stress 
itself must be invariant with r. As long as both stress components display a similar 
scaling with r, the same shear direction results. 

For the analysis of the viscous layer the standard thin shear layer approximations 
are adopted, namely that the pressure gradient normal to the wall is negligible, and that 
the velocity component normal to the wall is much smaller than the velocity 
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components parallel to the wall, which scale with the velocity of the inviscid flow. In 
accordance to the thin layer approximation only the shear stresses parallel to the 
surface are included. 

To investigate whether the flow equations allow a viscous layer structure compatible 
with the conical inviscid flow, the assumption is made that the viscous layer shows 
similarity in the r-direction, in that it scales with a transversal lengthscale 6 that is a 
function only of the projected ray length rp  = r cos @ (for @ small r p  z r, and the index 
p is omitted where no confusion arises). In a ( rp ,  0, tJ coordinate system, with [ = z/S, 
and for small ~, we have 

where h relates to the viscous layer growth in the radial direction: 

r dS 
h(r) = --. 

S dr ( 5 )  

Consideration of the continuity equation reveals that the velocity component normal 
to the wall is one order in S / r  smaller than the other velocity components, and hence 
the following scaling is applied to obtain scaled velocity components (indicated by a 
prime) that are all of order one: 

U/U* = U'(rp, 8,Q, V / U *  = V'(rp, 8, [), W / U *  = ( S / r )  W'(rp,  8,[), (6)  

with U* the velocity scale of the inviscid flow. Similarly, scales for the density and 
viscosity are denoted by p* and ,u*. Under the assumption of similarity any rp- 
dependence vanishes and the momentum equations for the Y- and &directions become 

(7) 

(8) 

r / S  p"C(1 - A )  u q +  vu;+ W'Ui- V'Z] = ~ p* U*271<) 

p"[(l - A )  u y +  V'Vk+ wy+ U'V']  = -A 
p * u * 2 + p * u * 2 2 < 7  

r / S  

where r1 and r2 are the shear stress components in the r- and &directions, respectively. 
The @-momentum equation reduces to the well-known condition that in the thin shear 
layer estimate the transverse pressure gradient can be neglected as being of higher 
order : 

If, furthermore, the energy equation is represented by a CroccWBusemann relation 
(White 1991), similarity in the velocity directly implies similarity in the temperature as 
well. Alternatively, a transport energy equation can be used (Inger 1987), but as this 
allows a similar scaling as the momentum equations (under appropriate boundary 
conditions) the energy equation is not considered here any further. The conditions 
under which the viscous flow equations, (7) and (S), allow similarity (given conical 
boundary conditions) are 

p k  N p* U*' S / r .  (9) 

h = constant * 8 K rh, 

rir /S-p*U*'*ri  -~*u*~-ccIJ\-l ( i =  1,2). 

(10) 

(1 1) 
6 
r 

The value of h for which the above condition is satisfied depends on how the shear 
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stresses are related to the velocity field. For laminar flow the shear stress is directly 
related to the velocity gradient, as 

where U, stands for U and U, for V. Combination of (11) and (12) shows that the 
viscous layer scaling for laminar flow is given by 

where Re, is the Reynolds number based on r and the appropriate reference properties. 
A dimensional estimate for large Reynolds number turbulent flow, where the 

turbulent shear stress dominates over the molecular stress in most of the viscous layer, 
is made using an eddy viscosity E based on a mixing-length concept: 

where 1 is the mixing length and Q a velocity scale which scales with U*. In the 
standard mixing length approach Q would typically be the magnitude of the total 
velocity vector; it is, however, not further defined here. The above expression is not 
intended as an accurate description of the turbulent shear stress, but as the dimensional 
estimate of its dependence on r. In fact, 116 and Q may contain arbitrary functions of 
5 and 0, and even be different for r1 and r2, without violating the above estimate (which 
is therefore more widely applicable than the eddy viscosity concept itself). Combination 
of (1 1) and (14) yields the following scaling for a turbulent viscous layer: 

S - r * h =  1, ri-p*U*'. (15) 
This does not mean that 6 and r are numerically of the same order of magnitude, but 
that the viscous layer thickness scales proportionally to r.  Note that the shear stresses 
show no Reynolds number dependence, because of the omission of the effect of 
molecular viscosity, which applies to the limit of infinitely large Re. As an indication 
of the effect of the molecular shear stress at finite Reynolds numbers, let Blasius' 
approximate empirical expressions for turbulent boundary layer growth in two- 
dimensional incompressible zero-pressure-gradient flow be considered, which yields 
(Schlichting 1979) 

(16) 
whereas White (1991) suggests h = 6/7 for improved agreement at higher Re,. This 
indeed illustrates a very weak dependence of the shear stress on Re,. 

The above analysis shows that (for the turbulent part of the viscous layer), assuming 
a similarity in the velocity profiles, a similarity in the shear stress profiles also exists, 
provided there is similarity in the profiles of 116, which are statements consistent with 
each other. It is interesting to confront this result with the concept of equilibrium 
boundary layers, as derived by Clauser (1954, 1956) for two-dimensional incom- 
pressible flow. He showed that for certain free-stream conditions for which a 
conveniently defined pressure-gradientlwall-shear parameter is constant (including the 
case of zero pressure gradient), the velocity defect profiles display similarity when 
scaled with the shear stress velocity u, = (Tw/p)1/2.  Using the momentum equation, he 
also showed that given this similarity no exact similarity of the shear stress profile can 
exist simultaneously. Tennekes & Lumley (1 972), however, showed that this similarity 

6 - r Re;'/' =- h = 415, ri - p*U*'ReP1l5 r ?  
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is possible in the sense of asymptotic invariance (Reynolds number similarity) for the 
case cf < 1, which means for the part of the boundary layer where the relative velocity 
defect is small. Note that the present findings, which state similarity in both velocity 
and shear stress profiles do not correspond directly to Clauser's defect law where u, is 
the scaling velocity instead of the outer flow velocity. However, as under these 
assumptions u, is deduced to be invariant with the streamwise distance, there is no 
direct disagreement. Also, the model of Tennekes & Lumley predicts that for a very 
slow variation of u, an approximately linear growth of the boundary layer thickness 6 
results, which is also found here. We may therefore conclude that the present model is 
valid as the description for very large Re, but does not provide an exact Re-scaling 
similarity. In that sense it is only an approximately correct asymptotic model, giving 
a local approximation instead of being valid for the complete range of large Re. The 
reason for this is that Re influences essentially remain present, owing to the viscous 
origin of the wall shear stress even at very large Re, and which is introduced through 
the matching of the turbulent (defect) layer with the laminar sublayer at the wall. 

3.2. Asymptotic structure of the interaction $ow 
Based on the above estimates the asymptotic scaling structure is discussed for the three- 
layer model of the interaction given in figure 4. The upper and middle layers (A and 
B) are essentially inviscid and show a conical similarity. The viscous layer (Cl), 
subjected to conical boundary conditions imposed by the inviscid flow, shows a conical 
extension in the direction along the surface, whereas normal to the surface the viscous 
layer thickness 6 scales with rh ( A  = 112 for laminar flow and h M 1 for large-Re 
turbulent flow), with 

(17) 

Note that this scaling only considers the dependence on r (the distance measured along 
a conical ray), and does not state that the viscous layer thickness should be necessarily 
invariant with 8. In the flow directly adjacent to the surface the molecular stresses are 
dominant even in turbulent flow, and the scaling thickness assub of this 'laminar 
sublayer' is defined by 

6 - r Re:-1+. ri - P * U * ~  Re:-'. 

ri N p*U*/SsUb 3 - r Re;A, 6,,,/6 N Re:-zA, (18) 

Note that Ssub is a scaling length and not the thickness of the laminar sublayer itself. 
The latter is formed from the total wall shear stress as alum - p/(pu,), which leads to 
the following estimates of the thickness and velocity scale of the laminar sublayer (see 
figure 6 ) :  

It is interesting to observe that for a conical flow the similarity scaling obtained here 
with respect to the development of 6 in the radial direction, is the same as that in the 
streamwise direction for a two-dimensional flow in a zero pressure gradient. Apparently 
the entrainment from the inviscid flow into the viscous layer can be considered to have 
a dimensionally similar effect, notwithstanding the conical growth in the spanwise 
direction. 

For turbulent flow the wall shear stress is found to be nearly conical (independent 
of r ) ,  which corresponds to recently reported numerical results (Knight et al. 1992). For 
laminar flow the skin friction scales as r-'l2. Note in comparison, that if a true conical 
similarity such as exists in the inviscid flow, were extended directly to the velocity field 
inside the viscous layer as well, the laminar skin friction would be predicted to scale 
with r-'. 

Slam - r Re;(1+A)/2, U,*,, = U* Blam/Sssub - U* (19) 
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FIGURE 6. Definition of parameters in the scaling of the velocity profile in the 
turbulent viscous layer. 

3.2.1. Departure from conicity 
Departure from conicity of the interaction can result from non-conicity of the 

additional boundary conditions, such as a violation of the assumed conical pressure 
condition due to the interaction with the viscous layer (displacement effect). Evidently 
a conical viscous layer growth provides a conical boundary condition, yielding a 
conical inviscid region regardless of the magnitude of the interaction. Departure from 
conicity of the interaction due to the non-conical growth of S (i.e. when h + 1) can be 
considered, in the case of weak interaction, a second-order effect if 6 4 r, which for 
h < 1 is asymptotically satisfied for r + m. For strong interaction, however, this is not 
the case and therefore strict conicity cannot be obtained. Hence, for turbulent flow the 
conditions for conicity are satisfied to a good approximation, whereas laminar 
interactions will possess a local conicity only. 

Obviously the above (asymptotic) description fails near the conical origin, because 
the viscous layer thickness does not vanish with r going to zero, but instead has to 
match the undisturbed boundary layer thickness. This gives rise to the creation of the 
so-called inception zone, an area of non-conical flow near the wedge vertex before the 
approximate asymptotic pattern is established. Owing to the finite incoming boundary 
layer thickness, the virtual origin of the conical flow is located upstream of the wedge 
vertex (Settles 1993). 

In addition to the viscous layer C, that results from the interaction of the shock and 
the existing boundary layer on the plate surface, a viscous layer also develops on the 
fin surface (region C2). In the asymptotic state this layer develops under the influence 
of a conical inviscid flow, and therefore its dimensional scaling is similar to that of C, 
(though the numerical scaling factor may be different). As it develops from the fin 
leading edge it does not have to match an upstream condition. Still, it cannot display 
a conical development right from the leading edge, because of the non-conicity of the 
inviscid flow (B) in the inception region, caused by the non-conical interaction 
condition at the plate. Only when both C, and C, develop from the leading edge (as 
in double-wedge configuration) is a strict conicity possible right from the wedge vertex 
(Charwat & Redekeopp 1967). 
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3.3. Topology of conical surface singularities in viscous $ow 

In viscous flow all velocity components vanish at the wall and application of the 
limiting streamline concept yields for the conical flow direction angle $ = VJU$ = 

72/71. A surface singularity is now obtained for = F&/U$. 
Taking the wall compatibility conditions into account the linearized streamline pattern 
near the sinnularitv is 

= 0, where then 

A further compatibility condition at the wall is obtained by taking the $-derivative of 
the continuity equation, which when evaluated at a conical singularity gives (see the 
Appendix) 

assuming conical thermodynamic surface conditions (surface temperature and static 
pressure are independent of r, hence also pr = 0 and ,ur = 0). The scaling law of the 
shear stress in the radial direction, (17), reveals that rUr* = hU@, while evaluation of 
(8) at the surface yields pe = 72*, hence V$+/U* = ~ , / 7 ~ .  Combining these results the 
linearized streamline pattern can be expressed by the following linear system, where all 
elements relate to properties of the flow near the surface: 

Excluding the degenerate cases $* = - (2 + A )  or 0, the structure of the singularity is 
determined by the value of $O as follows: 

$(j < -(2+h): separation saddle; 
- (2 + A )  < $, < - (2  + h)/3 : stable tangent node; 
$8 = - (2 + h)/3 : 

- (2+h) /3  < $, < 0: 
$@ > 0: 

stable node (star-like when p s  = 0, otherwise degener- 
ate); 
stable orthogonal node; 
attachment saddle ; 

while the separatrix angle y follows from (20) and (22), see Jordan & Smith (1977), as 

3.4. Structure of the singularity at the intersection line 

The conical singularity at the intersection line between the fin and plate (region C, in 
figure 4)  needs separate attention, because the previous expressions for $ and $o 
become degenerate, as both U@ and V@ vanish. The alternative expressions are found 
by letting both 0 and $ go to zero simultaneously, yielding $ = F&/UO$ and $, = 
GO+/U,+. Furthermore, taking first and second derivatives (with respect to B and @) of 
the continuity equation (A 3), and evaluating the results at the intersection point yields 
Wok = Woo$ = V& = GO@ = 0. The linearized streamline pattern near the intersection 
singularity then follows from 

By taking the B$-derivative of the continuity equation and assuming that for both 
viscous layer scalings the same value of h applies, the following condition is obtained : 

(25) Go* + W0$@ + (2  + 2 4  u** = 0. 
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Inviscid vortex model Viscous vortex model 

FIGURE 7. Fitting of a separation vortex structure in the asymptotic scaling model. 

Hence, upon division by Us+, (24) describing the linearized singularity is written as 

0 -(2+2A+$,) O I r I  7+h 
(;) = ($0 

Again excluding the degenerate cases, the structure of the intersection singularity is 
determined as follows : 

$o < -(2+2h): 
-(2+2A) < $* < -(1 + A ) :  
(b0 = -(1 + A ) :  
-(I + A )  < e, < 0: 
$o > 0: 

separation saddle ; 
stable orthogonal node; 
stable star-like node; 
stable tangent node; 
attachment saddle. 

3.5. Separation/reattachment structures in the asymptotic interaction model 

Based on the above results of the topological description, the issue of how to fit the 
singularity structure, in particular that of the separation, into the asymptotic scaling 
approach of figure 4 is now considered. Concerning the assumed separation structure, 
with a conjectured vortical structure in the flow field, some controversy may exist as 
to whether it should be a feature of the inviscid interaction region B, or of the viscous 
layer C, (as is illustrated in figure 7). In the former case the vortex structure would grow 
essentially in a conical way with the height of the region scaling with r (similar to the 
spanwise growth but probably to a lesser extent), whereas the ‘viscous vortex’ concept 
would involve a vertical scaling with 8. 

The ‘inviscid vortex’ concept would be comparable to the leading edge separation 
on delta wings, where the development of secondary separation may also be observed. 
In that case the primary flow separation of the interaction should be regarded as a 
process in which the shear layer detaches from the surface and rolls up into the vortex 
core, the detached shear layer and vortex core (both viscous regions) being separated 
from the viscous surface layer by a region of essentially inviscid flow. This concept 
would lead to the view that, though initially the vortex is necessarily embedded inside 
the viscous layer, with downstream development it eventually rises above this layer and 
establishes itself in the inviscid flow interaction region. The secondary separation, 
which as revealed in experimental observation develops some distance downstream of 
the vertex, can then be considered as the effect of the inviscid vortex on the surface 
shear layer under it. In this concept the interacting boundary layer model proposed in 
$1.4 for the description of the interaction is no longer valid, and a more complex 
asymptotic interaction structure would be needed to model the details of the separation 
region, the separated shear layer and vortex core. If this were true, the topological 
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description presented here becomes questionable, as it uses a viscous layer scaling 
derived from applying the three-layer approach directly to the entire viscous surface 
layer. 

The 'viscous vortex' concept on the other hand describes the flow separation as a 
local structure inside the viscous shear layer, which can be embedded in the three-layer 
model. The flow separation in this case does not involve a separation of the complete 
viscous shear layer, but is reflected in large cross-flow gradients in the direction normal 
to the surface and a significant local thickening of the viscous region, which can be 
considered as essentially an interacting boundary layer. 

A strong argument in favour of the viscous vortex model is that the separation of the 
boundary layer flow, caused by the shock-induced pressure gradient, is clearly a 
viscous vortex in (swept-)two-dimensional flows. On the other hand, the apparent 
conicity of the structure, as indicated by experimental and numerical studies, may seem 
to support the inviscid vortex concept. Here, any initial non-conicity may be partially 
attributable to the effect of the inception region, assuming that the true asymptotic 
structure is established only sufficiently far downstream. Note, however, that for 
turbulent flows the observation of (asymptotic) conicity of the flow field is not in 
conflict with the viscous vortex concept, as in that case 6 develops nearly proportional 
to r ( A  z 1). 

In the case of separation or attachment the scaling of the separatrix angle y is derived 
from (23) to be 

This estimate is compatible with the viscous vortex concept, whereas for an inviscid 
vortex approach we would have expected tan y - 1 , and consequently ps - p* U*2S/r.  
From evaluation of the Navier-Stokes equations near a conical saddle singularity at 
the wall, the pressure gradient normal to the wall is found to bep, = pw,,. Transferring 
this to the conical coordinate frame the following relation is obtained : 

p,tany+2(1-h)~, 
3 Potany P, p - -(W*,++U*) = 

+ - r  

from which, with tan y - 6 / r  and po - p* U*', follows that at most p* - p* U*26/r .  As 
this is of the same order as the term normally neglected in the thin shear layer 
approximation, see (9), this confirms that the shallow separation (with y - S / r )  
occurring in the viscous vortex model does not violate the thin layer approximations 
used in the scaling model. 

4. Application in the analysis of experimental flow visualizations 
4.1. Experimental arrangement 

Visualization experiments have been carried out in a 15 cm supersonic blow-down wind 
tunnel at a Mach number of the undisturbed flow of 2.94 (Van Oudheusden, Nebbeling 
& Bannink 1994). Three wedge-shaped fins, with a chord of 140 mm, height of 120 mm 
and an apex angle of 5", 9" or 13", were used to generate shock waves to interact with 
the boundary layer on the test section sidewall. The thickness of the undisturbed 
boundary layer at the location of the wedge leading edge is about 6mm (Re8= 
2.5 x lo5). Results of the flow visualizations for the weakest and the strongest 
interaction are shown in figure 8. 



Surface flow visualization of conical viscouslinviscid interactions 129 

FIGURE 8. Oil flow visualization of the interaction for wedge angle (a) So, and (b) 13" 
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side wall 

FIGURE 10. Evolution of the conical cross-flow pattern and bifurcation of the singularities. 

The oil flow picture for the 5" wedge shows a deflection of the flow without the 
strong convergence and oil accumulation effect normally indicating flow separation. 
The result for the 13' wedge on the other hand, displays a complex flow structure of 
approximately conical structure. Note that some three-dimensionality is present in the 
undisturbed boundary layer, due to transverse pressure gradients which the boundary 
layer has experienced in the nozzle section of the wind tunnel. Conical surface flow 
directions measured at different circular trajectories from the wedge apex, are given in 
figure 9. The inviscid flow direction and the surface flow deflection according to 
McCabe's theory have been indicated in the graphs as well. 

4.2. Bifurcations of the cross-flow singularity pattern 
Topological changes in the cross-flow pattern may occur under the effect of gradual 
changes in the governing flow conditions (shock strength, Mach or Reynolds number) 
or in its downstream development. These changes are reflected by bifurcations of the 
singularities in the cross-flow plane. The following section provides a discussion of the 
conjectured flow field topology of the interaction in the cross-flow plane for increasing 
shock strengths, which is subsequently used as a general framework for the 
interpretation of the experimentally obtained flow visualization results. The structure 
of the flow pattern and its further bifurcations are discussed with regard to the 
schematic cross-flow plane representations in figure 10. The bifurcations that are 
discussed are those that are both topologically possible and physically likely in the light 
of existing experimental evidence (Settles 1993). Only a topological order is considered, 
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in that subsequent structures are assumed to have evolved from a previous simpler 
structure by means of an additional bifurcation. For independent bifurcations of 
different singularities there is no topological preference concerning the order in which 
they occur. The order in which bifurcations occur in reality is only revealed from 
physical evidence. 

A first identification of the structure of the basic flow field is obtained from the cross- 
flow pattern for the inviscid flow (figure 3), which contains a single (star-like) node at 
the intersection of the wedge and plate surfaces. The introduction of viscosity into the 
flow description essentially changes the governing physics and cannot be considered as 
a continuous perturbation. However, the viscous flow for a zero wedge angle is 
topologically equivalent to that of the inviscid flow, with a single (not necessarily star- 
like) node at the plate-fin junction. 

The first bifurcation of the junction node results in a node on the plate wall and a 
saddle at the junction (figure lob). The node is associated with the deflecting effect of 
the shock wave, and corresponds to a singular ray dividing the streakline pattern into 
two regions. The outboard regions consists of the streaklines originating from 
upstream of the fin leading edge and deflected by the pressure rise over the shock wave, 
while in the inboard region streaklines originate from the fin-plate intersection. The 
latter are driven by the part of the flow that is initially directed towards the fin surface 
and subsequently deflected outwards through the attachment-saddle flow near the 
intersection corner. 

Figure 1O(c) shows the result of a further bifurcation, where the junction saddle has 
evolved into a node and with an additional attachment saddle, located between the 
junction and the outboard node near the shock wave. For increasing shock strength the 
latter node is observed to evolve into a separation saddle, which is assumed to be 
associated with a 'vortical' focus in the flow field above the wall (figure lOei), while 
figure 10(eii) shows the development of a secondary separation. The attachment 
streamline separates the flow that is directly deflected by the shock wave and which 
rolls up into the vortex core from the part of the flow that is directed along the fin, 
which is identified by the node at the fin. The possible further bifurcation of this 
junction node is shown in figure lO(d), first into a separation saddle and node at the 
fin (figure 10di). This may develop further into a corner vortex as reported by Kubota 
& Stollery (1982), by forming a separation saddle on the fin and in figure lO(dii). 
However, it is not possible to discriminate between the situations of figures lO(di) and 
lO(dii) on the basis of flow visualization on the plate surface alone. Supporting 
evidence of a corner vortex can therefore only be obtained if flow visualization is 
applied to the fin surface as well. 

4.3. Interpretation of the experimental flow field visualizations 
The experimentally obtained surface flow visualizations are now discussed in terms of 
the cross-flow topologies in figure 10. Note that although the analysis of 93 can provide 
a quantitative estimation of the singularities that occur on the surface itself, it gives no 
direct information about the structure of (possible) singularities inside the flow field 
and in that respect a certain amount of conjecture is therefore present in the proposed 
flow field structures. 

4.3.1. Wedge angle 5" 
The situation for the wedge angle 01 = 5" appears to be in good accordance with the 

non-separated deflection theory of McCabe (1966). A conical singularity appears for 
B = 17", which is well inboard of the shock wave, and with a local value of q50 of 
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approximately - 1, denoting a parallel streakline pattern and incomplete convergence. 
At the intersection of fin and plate surfaces $o is positive, which corresponds to an 
attachment saddle point. Outboard of the incomplete convergence line the streakline 
direction becomes gradually that of the undisturbed flow. A slight departure from 
conicity is observed in that the extent of the upstream influence region decreases with 
increasing distance from the wedge vertex, and the undisturbed flow direction is 
approached at smaller values of 8. This can be interpreted as an initially stronger 
spanwise growth, which corresponds to the inception region and the displacement of 
the virtual conical origin to a position upstream of the wedge vortex. Overall, there 
appears to be no significant topological change with streamwise distance of the cross- 
flow pattern, which possesses the structure of figure lO(b). 

4.3.2. Wedge angle 9" 
Apart from the direct vicinity of the junction line, the results for a wedge angle 

a = 9" are qualitatively similar to those of the previous case. However, the plate 
singularity occurring near 8 = 30" lies slightly beyond the inviscid shock position, 
which is Stanbrook's condition for incipient separation (Stanbrook 1960). Also, the 
value of the slope of q5 near the singularity significantly differs from - 1, and has 
increased to approximately $o = -2.8 which means complete convergence of the 
streaklines. Though it clearly differs from the parallel streakline pattern for the weak 
deflection case, the McCabe prediction seems to give a reasonable average streakline 
direction for a large region inboard of the convergence line. The above value of $o is 
approximately that for which the singularity changes from a node to a saddle point, 
and together with the observation that the deviation from the unseparated theory is not 
very large, the present situation can be described as that of incipient separation. 

The streakline direction data near the junction line indicate a large negative value of 
$@ at the junction itself, and a further singularity with a large positive slope a few 
degrees outboard the wedge. If these data are reliable, they indicate the existence of a 
separation saddle at the junction and an attachment saddle slightly outboard the 
junction. This corresponds to the structure in figure 10(d) (where the nature of the 
singularity on the fin surface can only be determined from the streakline pattern on the 
wedge, which is not available). As mentioned, the structure of the outboard singularity 
near the shock wave may be in transition from the nodal structure of figure 10(d) to 
that of a separation saddle as in figure 10(ei). Also, in this case there appears to be no 
significant downstream development of the flow topology. 

4.3.3. Wedge angle 13" 
In the flow pattern for the wedge angle a = 13" two distinct areas can be discerned 

with regard to the structure of the streakline pattern near the shock position. For 
distances from the wedge vertex up to approximately 80 mm only one singularity is 
present, whereas for larger distances two additional singularities appear. In the first 
region the singularity occurs at about 8 = 38", which is well outboard of the inviscid 
shock wave. Also, the local gradient $o is quite steep, indicating a separation saddle 
structure in the cross-flow plane. The singularity at the junction appears to be either 
a single attachment saddle (positive Qs), or a node with an attachment saddle located 
close to the junction, comparable to figure 10(ei). In the second region further 
downstream a second separation structure develops in the region between 32" and 35". 
At first the flow between this second structure and the outboard singularity shows a 
shallow plateau at a small value of $, indicating a nearly radial pattern of streaklines. 
Further downstream the curvature of the streaklines in this region increases. Although 
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in the first region the singularities of the secondary separation structure are absent, 
some indication of its development is given by irregularities in the $(@-curve in the 
region near 8 = 35". 

Near the junction substantial evidence is given of a nodal singularity (q& FZ - l), with 
an attachment saddle at 0 = 18" to 20". The variation in streakline direction between 
this attachment and the secondary separation saddle is quite large ($ in the order of 
20"), which results in a strongly curved streakline pattern. The singularity pattern is 
comparable to that of figure 10(eii). 

Surprisingly, although the result for a = 9" seemed to indicate at least the possibility 
of a corner vortex separating from the fin surface of the type of figure lO(dii), the 
results for M: = 13" provide no evidence for this. Such a separation structure would at 
least require a saddle structure of the junction singularity, but instead a nodal structure 
is found. As the present experiments did not include visualization of the surface flow 
on the fin, no evidence is available either supporting or contradicting such a structure. 
A description of the flow structure directly near the fin is therefore not further 
attempted here. 

5. Conclusions 
An investigation was made of the conical scaling of the flow equations in order to 

describe the asymptotic structure of the swept interaction of a shock-wave and a 
boundary layer. A three-layer flow model of the interaction was applied, assuming an 
approximate conicity of the inviscid region of the flow, while the viscous layers of the 
interaction flow directly adjacent to the solid surfaces are considered as interacting 
boundary layers. The analysis reveals that by applying a transverse scaling of the 
viscous regions, an approximate similarity structure is obtained which is compatible 
with the conditions imposed by the conical inviscid flow. In the case of turbulent flow 
the viscous layer growth is approximately conical, with the shear stress being invariant 
with the radial distance. For laminar flow, with S K rliz the inviscid flow remains 
weakly Re-dependent through the interaction condition, which results in the flow field 
becoming conical probably only in a local sense. Departure from conicity is evident in 
the inception region due to the matching with the incoming boundary layer. 

The result of this analysis assists in a quantitative interpretation of surface flow 
visualizations, in terms of the topology of the corresponding cross-flow streamline 
pattern. Incorporating the results of the viscous layer scaling establishes, together with 
the viscous no-slip condition and the continuity equation, a description of the 
linearized cross-flow field near the singularity. It was shown that for separa- 
tion/attachment which is compatible with the assumed conicity of the inviscid pressure 
field, the separatrix angle is of order S / r  and the normal pressure gradient is of the same 
order as in the thin shear layer approximation. This means that such a separa- 
tion/attachment does not violate the underlying assumptions of the analysis, and can 
be incorporated within the viscous region of the flow field model (interacting boundary 
layer instead of shear layer detachment). 

As an illustration, the method was applied to the analysis of surface oil flow 
visualizations of the swept interaction of a shock wave with a turbulent boundary layer 
at a free-stream Mach number of 2.94. 

The work was supported by the European Space Research and Technology Centre 
ESTEC. The authors furthermore gratefully acknowlege the valuable comments 
provided by Professor P. G. Bakker. 



Surface flow visualization of conical viscouslinviscid interactions 135 

Appendix. Coordinate system and wall compatibility relations in the 
conical flow field description 

A. 1 .  Coordinate systems for  a conical description of the flow field 
A Cartesian coordinate system ( x , y , z )  is defined with x in the direction of the 
undisturbed flow, y along the plate surface and z normal to the plate (figure 2), and with 
corresponding velocity components denoted by (u, v ,  w).  A conical coordinate system 
(r, 8, $) is introduced through a spherical projection, with r the radius, B the meridian 
angle and $ the azimuthal angle: 

x = rcosBcos$, y = rsin@cos$, z = rsin$. (A 1) 

The conical velocity components (U,  V,  W )  are defined with respect to a locally aligned 
orthonormal vectorial base : e, = grad r, e, = r grad 8, e,, = r grad $, and are related to 
the Cartesian velocity components (u, v, w) as 

U = u cos Bcos $ + v  sin Bcos $+ w sin $, 
V =  -usinB+vcosB, 

W = - ucos B sin $- v sin B sin $+ w cos $. 

The continuity equation expressed in these conical coordinates is given by 

1 
- (r2 cos $pU), + (,o V ) ,  + (cos $p W),, = 0, 
r 

where an index indicates the derivative with respect to the respective coordinate. 

A.2. Compatibility conditions at conical singular points on the surface 
In the following a number of wall compatibility conditions are derived for conical 
singularities on the surface, without assuming conicity of the flow field itself however. 

A.2.1. Inviscidflow 

directions are 
The inviscid flow equations for conservation of momentum in the three coordinate 

r 
pPr> 

1 
VV,+ WV,+ UV- tan $VW = -~ rUK+- 

1 
p cos $PO9 cos $ 

1 
VW,+ WW,+tan$V2+ UW = --p,. rUWr+- 

1 

cos $ P 

For inviscid flow the velocity condition at the impermeable surface at $ = 0 is 

W(r,  B , O )  = 0 * W, = W, = 0. 

p(&+ W,,+2U) = -r(pU>r, 

(A 7) 
Evaluation of the continuity equation (A 3) at a conical surface singularity (where 
V = 0) yields 

while eliminating the pressure from (A 5) and (A 6) gives 
(A 8) 

V,,(V,+ W,,+ U )  = - r d - r ( U V , ) , + r ( U W , ) , .  UYP 
P 
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In the case of a conical flow field the right-hand sides of (A 8) and (A 9) vanish, yielding 
the following two conditions which apply to a surface singularity: 

V,=O and &+W~+2U=O. (A 10) 

A.2.2. Viscous flow 
In viscous flow all velocity components vanish at a solid surface, hence 

I 
I 

U(r, 1 9 ~ 0 )  = 0 - U, = U, = 0, 

V(r, 0,O) = 0 3 V ,  = V, = 0, 

W(r, 8 , O )  = 0 * W, = W, = 0. 

Evaluating the continuity equation (A 3) at the wall leads to the additional condition 
that 

W,(r, 0,O) = 0 * W& = Wo$ = 0. (A 12) 

For viscous flow a conical singular point on the surface occurs when V, = 0. By taking 
the $-derivative of (A  3), a further compatibility condition at the wall is obtained, 
which when evaluated at the singularity yields 

When the thermodynamic surface conditions are conical, i.e. both the surface 
temperature and static pressure are independent of r ,  then p r  = 0 also, and as a result 
the above condition reduces to 

&,+ W$$+2U, = -rU,,. (A 14) 

Note that in the above discussion only the thermodynamic surface conditions were 
assumed to be conical, but not the velocity field itself. 
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